
Watermarking Non-numerical Databases

Agusti Solanas and Josep Domingo-Ferrer

Rovira i Virgili University of Tarragona,
Dept. of Computer Engineering and Maths,

Av. Päısos Catalans, 26, E-43007 Tarragona, Catalonia
{agusti.solanas, josep.domingo}@urv.net

Abstract. This paper presents a new watermarking method for
protecting non-numerical databases. The proposed watermarking system
allows the data owner to define a similarity function in order to reduce
the distortion caused by watermark embedding while, at the same time,
reducing the number of element modifications needed by the embedding
process. A mathematical analysis is provided to justify the robustness
of the mark against different types of malicious attacks. The usefulness
of this extensible and robust method is illustrated by describing some
application domains and examples.

Keywords: Private watermarking, Data hiding, Database security,
Non-numerical databases.

1 Introduction

Watermarking systems have been widely studied for intellectual property
protection (IPR) of multimedia data [1, 2, 3, 4]. It is common for watermarking
systems to make use of well-known cryptographic techniques such as digital
signatures [5] or signal processing techniques such as phase modulation [6] or
spread spectrum [7, 8]. Most methods designed for multimedia data rely on the
perceptual limitations of humans, e.g. our inability to distinguish between very
similar colors or sounds [9, 10]. However, over the last few years, researchers have
realized that these limitations cannot be exploited when trying to protect other
kinds of data, such as software [11] and databases [12].

Recent contributions on database IPR [12, 13] have clarified the main
differences and singularities of typical database content (alphanumeric data) vs
multimedia. Databases have very little redundancy as compared with multimedia
data and this fact makes it very difficult to find enough bandwidth in which
to embed the watermark. Moreover, databases can contain non-numerical or
categorical data like city names, drug names, hair colors, etc. Such non-numerical
data cannot be smoothly marked by increasing or reducing their value or
modifying some of their bits. A non-numerical element must be completely
altered in order to embed a mark and this limitation represents a great challenge
that is addressed in this paper.

Some authors have tackled this problem before ([13]), but their proposals have
some shortcomings regarding data distortion and watermark length. We present

V. Torra et al. (Eds.): MDAI 2006, LNAI 3885, pp. 239–250, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

240 A. Solanas and J. Domingo-Ferrer

here a watermarking system s for non-numerical data that: i) minimizes the
number of changes needed to embed the mark and; ii) reduces the distortion
produced by the mark by allowing the user to customize the watermark
embedding system through the definition of a similarity function related to the
data.

The rest of the paper is organized as follows. In Section 2, we describe our
model in detail and specify the notation and the assumptions used. Section 3
presents our watermarking system. Section 4 analyzes its properties of robustness
against different types of malicious attacks. In Section 5, the usefulness of the
similarity function is justified by presenting some examples and application
domains. Finally, conclusions are listed in Section 6.

2 The Model

We first state a model to which all subsequent solutions refer. We consider the
following elements to define our model: i) the data: what are we working with?
ii) our target: what do we want to achieve? and, iii) the enemy: what kind of
attacks are likely to be used by intruders to destroy our watermark? Moreover,
at the end of this section, some brief comments about notation and assumptions
are made.

2.1 The Data

The data we work with consist of a finite number T of non-numerical and discrete
elements E stored in a database. It is assumed that all elements in E are known
and can be ranked (e.g. alphabetic ordering would do). We easily find lots of
examples of this kind of data: for example, city names, carmaker names or drug
names. The main characteristic of non-numerical data is that they cannot be
smoothly modified, this is, any change is a complete change of value. If the data
we have are so critical that they cannot be modified at all then no watermark
system can be applied because –by its very nature– a watermarking system has
to change some elements in order to embed the mark. In this paper, we assume
that the data can be modified to a limited extent.

We consider a database organized in relations R, where each relation can
be viewed as the union of a primary key R.Pk and one or more attributes A.
The proposed watermarking system can be applied to any relation in which
modification of the primary key is not allowed: as argued in [12], we assume that
modification of the primary key results in an unacceptable loss of information.

Without loss of generality, we consider a relation R formed by the union of a
primary key R.Pk and a single attribute A, that is

R → {R.Pk, A}

2.2 Our Goal

We want to be able to hide a mark into the data without causing unacceptable
data modifications while, at the same time, making the mark as robust as possible

Watermarking Non-numerical Databases 241

against different types of malicious attacks. This challenging problem can be
broken down into two goals:

– Minimize the number of changes caused by the watermark embedding
system, while maintaining its robustness;

– Allow the user to extend the system by defining a specific similarity function
for minimizing the impact of the changes.

2.3 The Intruder

The intruder wants to get hold of data D and, after a malicious modification,
sell an unmarked version D′ for which the owners of D are unable to show
their intellectual property rights. Of course, data utility for D′ and D should
be similar for the attack to make sense (otherwise either D′ is useful but still
carries the mark or D′ has become useless as a result of mark removal attacks).
To destroy the mark embedded in D, the intruder can use different types of
malicious attacks.

– Horizontal sampling: In this attack, the intruder randomly selects a set
of tuples and discards the rest. Thus, if the mark depends on any kind of
spatial relation, it will be lost. The mark has to be resilient to this attack,
so that the intruder is forced to reduce the number of tuples selected from
D to an extent such that the resulting D′ is no longer very useful.

– Vertical sampling: Similar to the previous attack, this one is based on
randomly selecting attributes in a tuple that will be erased. In order to resist
this attack, the watermark should be recoverable from a single attribute.

– Perturbation of randomly chosen elements: Let a data element be the
value taken by a specific attribute in a specific tuple. Perturbing a randomly
selected subset of data elements is a very common attack for numerical data.
The main difference when applying this attack to non-numerical data is that
any modification is likely to be significant; it is not easy for the intruder to
perturb non-numerical data without substantial utility loss. In order for the
mark to be resilient against this attack, it should resist as many element
perturbations as needed to render D′ useless.

– Horizontal and vertical re-ordering: This attack consists of swapping
pairs of tuples or attributes without modifying them. If the mark has to
resist this attack, it cannot be based on any relative spatial position of the
data elements.

2.4 Notation and Assumptions

In this section, we briefly enumerate some assumptions and notation used in the
remainder of this article (see also Table 1).

– Hash function H . Secure one-way hash functions such as SHA [14] are used in
our algorithm. Given a value z′, we assume it is computationally unfeasible
to find z such that H(z) = z′.

242 A. Solanas and J. Domingo-Ferrer

Table 1. Table of symbols

Symbols Meaning
E Set of all non-numerical elements
G A pseudo-random generator
N Number of markable elements
n Number of actually marked elements

K1 Secret key used for embedding the mark
K2 Secret key used for computing the mark
P One-dimensional table of products xisi

R A relation in the database
sf A similarity function
T Total number of elements in the data
t A tuple in the relation
V Binary vector of selected elements
γ Fraction of selected elements for embedding

– Pseudo-random number generator G. This generator must be seeded with a
combination of information taken from the data and a secret key only known
to the owner of the data. We assume that the pseudo-random generator
outputs numbers that are uniformly distributed between 0 and 1 Once the
pseudo-random generator is initialized, a new number is obtained by using
the next(G) function.

– Least significant bit lsb(e). This function returns the value of the least
significant bit of the elements e ∈ E and is mainly used in the mark recovery
process.

3 Our Watermarking System

The proposed watermarking system can be subdivided into two subsystems:
embedding and recovery.

3.1 The Embedding Subsystem

Embedding faces three main problems. First, it is necessary to decide where
the watermark has to be hidden, that is, the elements of the attribute A in
the relation R which will be considered candidates for a modification. Second, a
similarity function df can be defined by the user in order to minimize the impact
of embedding a watermark W into the data D and the watermark embedding
system must allow the user to do so. Third, the watermark W must be computed
and embedded into D, while meeting the previous restrictions.

Selection of the embedding positions. Similarly to [12] and [13], we make
the assumption that a primary key r.Pk exists in the relation which cannot be
modified without causing unacceptable damage to data. We want the selected
elements to be picked independently of their relative position in the relation.

Watermarking Non-numerical Databases 243

Algorithm 1. Selection of the elements to be modified

1) function GetElementsToModify(K1, R) return
→
V

2) for each tuple t ∈ R do
3) seed G with r.Pk||K1

4) if next(G) ≤ γ then
5) Vt = 1
6) else
7) Vt = 0
8) end if
9) end for

10) return
→
V

11) end function GetElementsToModify

To that end, we use the primary key that uniquely addresses an element. In
order to make this process secure, we use a secret key K1 and we concatenate
it with the primary key r.Pk to obtain a value that is used to seed a pseudo-
random generator G. The data elements for embedding are selected by using the
pseudo-random generator as described in Algorithm 1.

After running Algorithm 1, a one-dimensional table
→
V is obtained. The size

of this table equals the number T of tuples in the relation. Each position of
→
V contains a 0 or a 1 representing the selection result. All positions set to 1
represent the tuples in the relation that are selected for being modified in order
to embed the mark.

In order to control the impact of watermark embedding, the relation between
the selected elements and the total number of elements T is controlled through
the γ parameter. The expected number of selected elements is N = γT . Thus,
if γ = 0.25 then 25% of tuples can be expected to be selected for being marked.

The similarity function. When a mark has to be hidden into numerical data,
numerical data elements can be smoothly modified by slightly increasing or
decreasing their values. On the contrary, hiding a mark into a non-numerical
data element is often not smooth, as it implies substituting a categorical value for
another. Previous approaches [13] assume that the replacement of a categorical
value by another introduces the same distortion into the data independently of
the new categorical value that replaces the original one. Even if we agree that
changing the category of a non-numerical element is an important modification,
we claim that the amount of distortion caused by this replacement depends on
the similarity between the original category and the replacement category. In
order to minimize the impact of watermark embedding on the data, we propose
to resort to a user-defined similarity function, sf(e1, e2) → [0, 1]

Given two elements e1 and e2, the similarity function returns a similarity
value in [0, 1]. A 0 similarity is interpreted as “very different” and a 1 similarity
as “very similar”. Using such a similarity function, the distortion produced by
swapping two data elements can be quantified and minimized. In Section 5 some
example similarity functions applied to different domains are described.

244 A. Solanas and J. Domingo-Ferrer

Hiding the mark. The last step in the embedding process consists of: i) finding
the elements that will replace the original ones in order to hide the watermark;
ii) carrying out the replacement. This process can be denoted as:

Embed(R, K2, sf, M) → R′

To hide the watermark in the relation R we need: i) a secret key K2 different
from the one used to select the embedding position 1; ii) a similarity function
sf to minimize the impact of watermark embedding (optionally defined by the
user); and iii) a security parameter M .

Once the elements that will be modified are selected using Algorithm 1, we
specify the constraint below to be met by the elements that will replace the
original ones:

N∑

i=0

sixi ≥ M (1)

where:
→
X= {xi} are pseudo-random numbers uniformly distributed in [−λ, λ],

where λ is a robustness parameter; S = {si} are the least significant bits of the
replacement data elements expressed as integers in {−1, 1}; M is a user-definable
security parameter that determines the robustness and the impact of the mark.
In the next paragraphs, details are given on the computation of xi and si.

Computation of the values
→
X. A value xi is computed for each selected tuple. that

is, for indexes i such that Vi = 1 (in terms of Algorithm 1). This computation is
performed by using a secret key K2 and the primary relation key R.Pk 2 to seed
a pseudo-random number generator G. Then a set of N pseudo-random numbers
are obtained using G and they are scaled in [−λ, λ]. In other words, we use a hash
function that receives the concatenation of the primary key and a secret key K2
as an input parameter and returns a number in [−λ, λ].

H(R.Pk|K2) → [−λ, λ]

We require G to be such that H(·) is a secure one-way hash function: inferring
the value of R.Pk|K2 from H(R.Pk|K2) should be infeasible.

Selection of the values
→
S . Once the values

→
X= {xi} are fixed, we must determine

values si satisfying Constraint (1). We want to minimize the impact of mark
embedding on data, which translates to reducing the number and magnitude of
changes to be made.

We initialize each si with the least significant bit lsb(ei) of the original element
ei to be marked. Specifically,

1 It is possible to compute the watermark by using only one secret key, but we prefer
to use two keys in order to avoid the risk of correlations between the generated
pseudo-random numbers[13].

2 Since we assume that the primary key cannot be modified, the values of X are only
obtainable by the data owner and cannot be modified.

Watermarking Non-numerical Databases 245

Algorithm 2. Computation of
→
S

1) procedure SetSElements(
→
S ,

→
X, M)

2) P =ComputeProducts(
→
S ,

→
X)

3) SortInIncreasingOrder(
→
P)

4) while M̂ < M do

5) i=ObtainIndexOfMostNegativeProduct(
→
P)

6) Swap(
→
S ,i)

7) RemoveIFromP(
→
P ,i)

8) M̂=ComputeMark(
→
S ,

→
X)

9) endwhile
10) end procedure SetSElements

si =

⎧
⎨

⎩

−1 if lsb(ei) = 0

1 if lsb(ei) = 1

After the initialization of
→
S , we compute

N∑

i=0

sixi = M̂

Next, if M̂ > M then Constraint (1) is met; so, we take M̂ as M and no
changes are introduced to the data (minimum distortion). When M̂ < M then
it is necessary to change some values of

→
S in order to satisfy the embedding

constraint. The way in which the values of
→
S are changed is described in

Algorithm 2. The algorithms called within Algorithm 2 are described in the
remainder of the Section (Algorithms 3 and 4).

Initially, the products
→
P of each xi and si are computed in order to find the

impact of the i-th element in the computation of M̂ . Then the one-dimensional
table

→
P is sorted in order of increasing magnitude. To satisfy Constraint (1) with

the minimum number of changes, the least significant bit si of the most negative
product is inverted; in that way, with a single bit inversion, we obtain a maximum
increase of M̂ . To perform the inversion of si, the element ei in the relation
R must be replaced by the most similar element of E with a different least
significant bit (see Algorithm 4). A similarity function sf is used to determine
the most similar element to ei. This similarity function should be defined by the
owner of the database. However, it is optional and when it is not given, a simple
alphabetical comparison could be made to obtain a similarity value.

Note 1 (On the role of λ). Note that the magnitude of the most negative product
is related to the range [−λ, λ] where the xi are chosen. Thus, a larger λ will reduce
the expected number of iterations of Algorithm 2 and therefore the expected

246 A. Solanas and J. Domingo-Ferrer

Algorithm 3. Computation of the watermark from a given
→
S and

→
X

1) function ComputeMark(
→
S ,

→
X) return M̂

2) M̂ = 0
3) For i = 1 to N do
4) M̂ = M̂ + sixi

5) end for
6) return M̂
7) end function ComputeMark

Algorithm 4. Replacement of an original element by its most similar substitute

1) procedure Replace(
→
S, i)

2) lsb = 0 //Initialize the least significant bit
3) if si == 1 then //change the si value
4) si = −1
5) lsb = 0
6) else if si == −1 then
7) si = 1
8) lsb = 1
9) endif
10) newElement = getMostSimilarElement(ei, lsb, sf)
11) ei = newElement
12) end procedure Replace

number n ≤ N of actually marked elements. The drawback of taking λ too
big is that, the larger λ, the less elements will carry the mark, so that we gain
imperceptibility but lose robustness. Therefore, λ should be chosen so that the
resulting n is not much smaller than the number of markable elements N .

It is easy to see that, following Algorithm 2, the number of changes made to
satisfy Constraint (1) is minimal for a fixed value of λ. Using a similarity function
sf capturing the semantics of data allows each individual change (replacement)
to be minimal in magnitude; this is done by the getMostSimilarElement user-
definable function called in Algorithm 4. The result is minimal data alteration
in watermark embedding.

3.2 The Recovery Subsystem

Watermark recovery must determine whether a watermark is embedded in a
relation. To perform this task, the recovery subsystem receives as parameters:
the relation R̂ which presumably embeds the mark and may have been attacked;
the security parameter M ; and the secret keys K1 and K2 only known to the
data owner. Thus, this subsystem can be denoted as:

Recovery(R̂, K1, K2, M) → (yes/no)

Watermarking Non-numerical Databases 247

Similarly to the embedding process, it is first necessary to obtain the marked
elements using Algorithm 1. Note that is not necessary to know the original R in
order to apply Algorithm 1 because the primary key of R is supposed to remain
unmodified in R̂. Once the marked elements are located, the value of each xi

is computed in the same way as in the embedding process, using the secret key
K2. Finally, the value of each s′i is obtained from the least significant bit of the
elements by applying the lsb() function. Note that, in general it can happen that
s′i �= si, as a result of accidental/intentional distortion during the data lifecycle.
Once all the above information is recovered, the recovery subsystem computes∑N

i=0 s′ixi = M̂ ′

The recovery subsystem decides that the data contain a watermark when
M̂ ′ ≥ M

2 . Otherwise, no mark is recovered.

4 Robustness Analysis

The proposed watermarking system is robust against random alterations and
vertical and horizontal sampling. The intruder can perform a broad range of
different malicious attacks. We now describe how the watermark embedded by
our watermarking system tolerates these attacks.

– Vertical sampling: Our system can be applied to any relation R with at
least a primary key and an attribute A. The inserted mark does not depend
on any relationship between attributes and can be embedded individually
in as many attributes as desired. Thus, the attack based on selecting some
attributes and erasing the rest has no effect on our watermark because, at
least, one marked attribute remains.

– Horizontal and vertical re-ordering: The horizontal re-ordering attack
consists of swapping the positions of pairs of tuples without modifying them.
Our watermarking system is not vulnerable to this kind of attack because the
relative position of the elements in the relation R is not used to determine
whether they are marked.
Similarly, vertical re-ordering consists in swapping the positions of pairs of
attributes without modifying them. As argued in the previous sections, our
method is applied to an attribute and it does not depend on its relative
position in the relation.

– Perturbation of randomly chosen elements: The recovery system
detects the existence of a mark when M̂ ′ ≥ M

2 . The intruder wants to
destroy the mark by modifying the value of randomly chosen elements. If
the intruder is able to destroy enough marked elements then the mark will
not be recovered. Thus, a natural strategy that leads to arbitrary reduction
of the probability of mark destruction is to increase the number n of marked
elements, which can be done by decreasing λ and increasing the number N
of markable elements.

– Horizontal sampling: This malicious attack is based on a random selection
of a fraction of tuples of a relation R. This usually tricky attack is not

248 A. Solanas and J. Domingo-Ferrer

effective against our method because the amount of non-selected tuples has to
be very big compared with the number of tuples modified by the watermark
in order to destroy it. Considering that a non-selected tuple is like an altered
tuple, the analysis is analogous to the one above for perturbation attack.

4.1 A Toy Example

To illustrate the robustness of our model against perturbation of randomly
chosen elements, we take a toy database that consists of a relation R with 250
tuples or elements. We embed a mark that modifies n ≤ N = 25 elements (10%)
and a mark that modifies n ≤ N = 30 elements (12%). We assume that, for
data to stay useful, up to 30% of elements can be modified. This is up to 75
element modifications, about three times the number of modifications caused by
watermark embedding. Also, we have chosen a value for M such that the mark
is destroyed if more than half of the N markable elements are modified. If the
intruder modifies P elements among the total T elements, the probability that
she destroys the mark by randomly hitting more than N/2 markable elements is

P [Destruction] =

∑N/2
i=0

(N

N
2 +i

)(T−N

P−(N
2 +i)

)

(T

P

)

Table 2 shows the probability of the intruder destroying the mark by modifying
less than 30% of the elements, that is, up to P = 75 elements. It can be seen that,
even if the intruder modifies three times as many elements as those modified by
the mark embedding algorithm (75 vs 25) her probability of success is no more
than 0.25.

Table 2. Destruction of the mark in the toy example

Modified elements P(Destroy |25 marked elem.) P(Destroy |30 marked elem.)
25 0.0000087 ≈ 0
30 0.000077 0.0000009
35 0.000422 0.00001
40 0.0016 0.00007
45 0.0051 0.00034
50 0.0132 0.0012
55 0.029 0.0038
60 0.057 0.0099
65 0.102 0.022
70 0.16 0.045
75 0.25 0.081

5 Application Domains

The main application of the presented watermarking system is to protect
non-numerical (i.e. categorical) databases from being copied and re-sold by
an intruder. These databases are sold to companies which want to obtain
information from the data, usually by applying data mining techniques.

Watermarking Non-numerical Databases 249

We next illustrate how a similarity function could be defined in a couple of
specific example databases.

5.1 Drugs Database

Imagine that we have a drugs database storing information about the drugs
taken by a set of patients. We may have information about the composition
of each drug and we can determine the similarity between them. In this case
of study, the similarity function defined by the user may be based in the next
considerations:

Similarity function: Coincidences in the number and proportion of
components in a given drug. Following this similarity function we can replace
the element “ASPIRIN 250g” by the generic element “acetylsalicylic acid 250g”
without any distortion. Note that the element “acetylsalicylic acid 250g” must
be in the database in order to be considered for replacing the element “ASPIRIN
250g”. Similarly, if we try to replace “ASPIRIN 250g” by “CHLORHEXIDINE
GLUCONATE 1g” the similarity function must return a value very close to 0.

5.2 Network Nodes Database

Let us consider a case where we have the database of an internet service provider.
This database contains a set of network nodes determined by a discrete label
(e.g. A2345-C, B3490-D). If we use alphabetical order and do not care about the
similarity between nodes, the impact produced by watermark embedding could
be important. However, if we consider a similarity function this impact could be
clearly reduced.

Similarity function: In this case, the similarity function can be defined as the
number of “hops” between nodes. This measurement gives a very concise idea
about the location of the nodes. Thus, if two nodes are nearby, the similarity
function will tend to 1. On the contrary, if the number of “hops” from one node
to another is large, the similarity function returns a number close to 0.

6 Conclusions and Further Work

We have presented a new watermarking system for protecting non-numerical
data. The system minimizes the number of modifications needed to embed
the mark and allows the data owner to define a similarity function to guide
each individual modification so that the utility loss it entails is minimal. The
robustness analysis demonstrates the resiliency of our mark against different kind
of malicious attacks. The similarity function is user-defined and depends on the
particular database to be protected; this has been illustrated with two examples.
Future work will involve a false positive rate analysis and extensive robustness
tests in large databases with a broader range of attacks. Also, the definition of a
similarity function that optimally (rather than reasonably) captures data utility
loss in a specific database is a nontrivial issue for future research in artificial
intelligence.

250 A. Solanas and J. Domingo-Ferrer

Acknowledgments

The authors are partly supported by the Catalan government under grant 2005
SGR 00446, and by the Spanish Ministry of Science and Education through
project SEG2004-04352-C04-01 “PROPRIETAS”.

References

1. Jordan, F., Vynne, T.: Motion vector watermarking. Patent (1997) Laboratoire
de Traitement des Signaux École Polytechnique Fédérale de Lausanne.

2. Hartung, F., Girod, B.: Watermarking of uncompressed and compressed video.
Signal Processing 66 (1998) 283–301

3. Katzenbeisser, S., Petitcolas, F.A.P.: Information Hiding: techniques for
steganography and digital watermarking. Computer security series. Artech House
(2000)

4. Domingo-Ferrer, J.: Anonymous fingerprinting of electronic information with
automatic reidentification of redistributors. Electronics Letters 34 (1998) 1303–
1304

5. Pitas, I., Kaskalis, T.H.: Applying signatures on digital images. In: IEEE Workshop
on Nonlinear Signal and Image Processing, Thessaloniki, Greece (1995) 460–463

6. Ruanaidth, J.O., Downling, W., Boland, F.: Phase watermarking of digital
images. In: Proceedings of the IEEE international Conference on Image Processing.
Volume 3. (1996) 239–242

7. Cox, I.J., Kilian, J., Leighton, T., Shamoon, T.: Secure spread spectrum
watermarking for multimedia. Technical report, NEC Research Institute, Technical
Report 95 - 10 (1995)

8. Sebé, F., Domingo-Ferrer, J., Solanas, A.: Noise-robust watermarking for numerical
datasets. Lecture Notes in Computer Science 3558 (2005) 134–143

9. Delaigle, J.F., Vleeschuwer, C.D., Macq, B.: Watermarking using a matching model
based on the human visual system, Marly le Roi. (1997)

10. Ko, B.S., Nishimura, R., Suzuki, Y.: Time-spread echo method for digital audio
watermarking. IEEE Transactions on Multimedia 7 (2005) 212–221

11. Collberg, C.S., Thomborson, C.: Watermarking, tamper-proofing and obfuscation:
tools for software protection. IEEE Transactions on Software Engineering 28 (2002)
735–746 http://dx.doi.org/10.1109/TSE.2002.1027797.

12. Agrawal, R., Haas, P.J., Kiernan, J.: Watermarking relational data: framework,
algorithms and analysis. VLDB journal 12 (2003) 157–169

13. Sion, R.: Proving ownership over categorical data. In: Proceedings of the 20th
International Conference on Data Engineering (ICDE04), Boston (2004) 584–595

14. NIST: Proposed federal information processing standard for secure hash standard.
Federal Register 57 (1992) 41727

	Introduction
	The Model
	The Data
	Our Goal
	The Intruder
	Notation and Assumptions

	Our Watermarking System
	The Embedding Subsystem
	The Recovery Subsystem

	Robustness Analysis
	A Toy Example

	Application Domains
	Drugs Database
	Network Nodes Database

	Conclusions and Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

